Detector Implementations Based on Software Defined Radio for Next Generation Wireless Systems

Janne Janhunen
janne.janhunen@ee.oulu.fi
Outline

- Introduction
- Benefits and Challenges of Programmability
- System Model
- Unlinear Detector Algorithms
- Programmable Platforms and Architectures
- Results
- Conclusions
Introduction

- MIMO technique combined with OFDM (MIMO-OFDM) has been introduced to 3GPP LTE and WiMAX and proposed to LTE-A.
- High data rate requirements cause challenges to the real-time implementations.

- A software defined radio (SDR) is a radio communication system where components are implemented using software on a computing device.

- Algorithm study and development
 - K-best list sphere detection (LSD) algorithm
 - Layered ORthogonal lattice Detector (LORD)
 - Selective Spanning with Fast Enumeration (SSFE)

- Programmable platforms
 - Digital Signal Processors (DSP) such as TMS320C6711 (floating point), TMS320C55x (fixed-point) and TMS320C6455 (fixed-point).
 - System-on-a-chip such as Sandbridges SB3011 and SB3500 devices which employ multi-threading and multiple cores.
 - Application-specific instruction-set processor (ASIP) which is based on the transport triggered architecture (TTA)
Benefits and Challenges of Programmability

- Programmability = reuse of hardware
- Programmable platform provides an opportunity to exploit the silicon more efficiently than a pure hardware implementation in a multi-standard world.
- In addition, software design and time-to-market is faster than in hardware design.
- To improve performance, programmable core can be accelerated with fine grained accelerators.
- However, programmability increases power consumption (possible up-to 20-50x compared to corresponding hardware accelerator) and computational overhead.
 - Instruction fetch/decode
 - Caches
 - Registers
 - Control

<table>
<thead>
<tr>
<th>Platform</th>
<th>Power consumption/operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware accelerator</td>
<td>~5-10pJ</td>
</tr>
<tr>
<td>90 nm CMOS</td>
<td></td>
</tr>
<tr>
<td>Embedded processor</td>
<td>~125-500pJ</td>
</tr>
<tr>
<td>General purpose processor</td>
<td>~10-20nJ</td>
</tr>
</tbody>
</table>

Silvén 2008

Embedded processor energy consumption breakdown.
Dally et al 2008
The MIMO-OFDM system model requirements are based on the 3G LTE standard.

The received signal can be described with the equation

\[y_s = H_s x_s + \eta_s, \quad s = 1, 2, \ldots, S, \]

where \(S \) is the number of subcarriers, \(x \) is the transmitted signal, \(\eta \) is the Gaussian noise vector and \(H \) is the channel matrix.
Unlinear Detector Algorithms and Simulations
Unlinear Detector Algorithms

- All algorithms are based on the tree type of search
- An example: 2x2 antenna system, 16-QAM, real system model

K-best, K=4

+ Fixed computational complexity
+ Fixed throughput
+ Amount of control is small

- Wasted partial Euclidean distance (PED) computation
- Large list size increases the computational complexity fast
- Expensive sorter operation
- Limited possibility to parallelize tree search between levels

Layered ORthogonal lattice Detector (LORD)

+ Fixed computational complexity
+ Fixed throughput
+ Rather simple slicing operation replaces the expensive sorting
+ No unnecessary PED computation
- In typical case, high number of nodes (constellation points) are required on the top level of the tree
- Final list size might be high

Selective Spanning with Fast Enumeration (SSFE), m=[2 1 2 2]
Simulation
Platforms and Architectures
Platforms and Architectures

Digital Signal Processors (DSP)
TMS320C6711 (floating point VLIW (Very Long Instruction Word))
TMS320C6455 (fixed-point VLIW)
TMS320C55x (fixed-point, low-power processor)

System-on-a-chip (SoC)
Sandbridge SB3500 (multi-threading and multiple cores, resembles VLIW)

Application-specific instruction-set processor (ASIP)
Transport Triggered Architecture (TTA)

VLIW (Fischer 1983)
TTA (Corporaal 1991)
Transport Triggered Architecture

- TTA resembles a VLIW architecture
 - TTA instruction word consists of multiple moves -> one for each bus
 - Each move determines the data transport on the corresponding bus
 - Very fine-grained control
 - Allows optimization which is not available in a conventional processors, e.g. data moves between functional units without using registers
- Finite State Machine of a hardware accelerator is replaced by the transport program in TTA
 - About the same number of control bits are required as in FSM based data path control
 - Depending on the design, it is possible to achieve the same energy efficiency with TTA as ASIC.

```
add R0, R1 → R2
R0 → adder.operand
R1 → adder.trigger
adder.result → R2
adder.result → mul.operand
```
Transport Triggered Architecture

- The bypass network of the processor is exposed to the programmer/compiler
 - Software has complete control over the internal transports
 - Operations are side-effects of data transports: only one instruction – MOVE!
 - Writing data into a *triggering port* of a functional unit starts computation
 - The latencies of functional units are visible to programmer/compiler

- TCE (TTA Codesign Environment)
 - C-compiler available in a toolset

- Mapping TTA on platform: FPGA and ASIC
Transport Triggered Architecture
OSEd - Operation Set Editor

With OSEd it is possible to add, simulate and delete operation definitions
Four implementations of K-best list sphere detector

- $K=16$

<table>
<thead>
<tr>
<th></th>
<th>Clock frequency (MHz)</th>
<th>Throughput (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMS320C6455</td>
<td>1200</td>
<td>1.8</td>
</tr>
<tr>
<td>Sandblaster 3500</td>
<td>1800 (3x600)</td>
<td>3.4</td>
</tr>
<tr>
<td>Sandblaster 3500 + instruction set extension for sorter</td>
<td>1800 (3x600)</td>
<td>32.0</td>
</tr>
<tr>
<td>ASIP based on TTA</td>
<td>280</td>
<td>7.6</td>
</tr>
</tbody>
</table>
Results(2)

- A design example of K-best-LORD algorithm
 - TTA assembly hand coded -> tight scheduling, all the function units are kept busy
 - 2x2 16-QAM system: 35 clock cycles per tree search for LORD, two searches per symbol vector in LORD algorithm. Therefore 70 clock cycles required for symbol vector.

<table>
<thead>
<tr>
<th>FU</th>
<th># of FUs</th>
<th>Latency (cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUL</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>SLICER</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>ADD/SUB</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>SORTER</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>REG BANKS (8x16bit, 1024 bits)</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clock rate [MHz]</th>
<th>Decoding rate [Mbps]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>11.4</td>
</tr>
<tr>
<td>300</td>
<td>34.4</td>
</tr>
<tr>
<td>500</td>
<td>57.1</td>
</tr>
</tbody>
</table>
Conclusion

- MIMO technique combined with OFDM (MIMO-OFDM) provides an opportunity for higher data rates but real-time implementation has to be pushed on the edge.

- Digital signal processors require (fine grained) accelerators to achieve expected data rates.

- Because there are multiple (wireless communication) standards to be supported, programmable platforms are of interest.

- Software defined radio is an old concept. However, not until now techniques have become mature enough to start responding to the expectations what has been built on it.
Thank you!