Minimum-Length Scheduling: A Cross-Layer Approach

Anna Pantelidou
Centre for Wireless Communications, University of Oulu

GIGA Seminar 2010

11-01-2010
Introduction

- Scheduling is a fundamental problem in wireless systems
 - **Who** transmits and **when**
 - Depends on transmission powers, **rates**
- Various **performance objectives**
 - Utility Maximization (e.g., Fairness)
 - QoS (e.g., Delay)
 - Throughput (e.g., Stability, Sum Throughput)
- To optimize under these objectives one must assume the channel is stationary and ergodic
- Wireless channel is unpredictable
 - Mobility, nodes with finite energy resources, etc.
- **Minimum-length Scheduling**: alternative performance metric
 - Minimize **time** to meet given demand (rate, volume) at destinations
 - Focus on **volume**
 - Related to throughput maximization
 - Valid also for non-ergodic, non-stationary links
Network Model

- Single-hop multiple-access setting
 - K source/destination pairs
- Slotted time $t \in \{0, 1, \ldots\}$
- Transmission power of source k at slot t
 \[P_k(t) \in \{0, P_k^{\text{max}}\} \]
- Time-invariant channel
 \[0 < G(k, j) \leq 1 \]
- Noise power at destination $j : N_j$
- Initial volume at source $k : d_k$
- Queue size of source k at slot $t : X_k(t)$
 - Queue-size is initialized to $X_k(0) = d_k$
Determining Transmission Success

- Source k transmits "successfully" to destination k at rate r_k if

$$\text{SINR} = \frac{P_k(t)G(k,k)}{N_k + \sum_{j=1, j \neq k}^{K} P_j(t)G(j,k)} \geq \theta_{t,k}(r_k)$$

- SINR threshold is a function of various parameters, e.g.,
 - Target error rate
 - Modulation
 - Coding
 - Transmission rate (bits/sec)

- SINR threshold is an increasing function of the maximum rate
A Fundamental Trade-Off

- Decreasing transmission rate ➔ Decreases threshold value
 - More sources jointly satisfy the SINR criterion
 - But sources transmit for a higher fraction of the time
- Increasing transmission rate ➔ Increases threshold value
 - Fewer sources jointly satisfy the SINR criterion
 - More time-sharing needed which decreases the effective rate
- Which mode of operation is preferable?
 - Depends on performance objective and channel conditions
Rate Control and Scheduling Policy

- \mathcal{R}: Set of all feasible K-dimensional rate vectors
 - Set with cardinality: $|\mathcal{R}| = 2^K - 1$

- Centralized network control policy selects at every slot a rate vector
 $$\mathbf{r}(t) = (r_1(t), \ldots, r_K(t)) \in \mathcal{R}$$
 - All sources k for which $r_k(t) = 0$ are not scheduled

- Queue size evolution $\mathbf{X}(t+1) = [\mathbf{X}(t) - \mathbf{r}(t+1)]^+$
 - Queue sizes keep decreasing until they empty

- **Objective:**
 - Select a **rate vector** at each slot to **minimize** the **number of slots** until all queues empty
An Example

- Vector of initial demands \(\mathbf{X}(0) = \begin{bmatrix} 4 \\ 6 \end{bmatrix} \)
- Rate vectors

\[
\begin{align*}
\mathbf{r}^1 &= \begin{bmatrix} 3 \\ 0 \end{bmatrix}, & \mathbf{r}^2 &= \begin{bmatrix} 0 \\ 3 \end{bmatrix}, & \mathbf{r}^3 &= \begin{bmatrix} 2 \\ 2 \end{bmatrix}
\end{align*}
\]
An Example

- Each vertex represents a queue size vector
- Each directed edge corresponds to a rate vector in \mathcal{R}
- Weight of an edge equals one (time slot)

$$ r^1 = \begin{bmatrix} 3 \\ 0 \end{bmatrix} $$
An Example

\[
\mathbf{r}^2 = \begin{bmatrix} 0 \\ 3 \end{bmatrix}
\]
An Example

- For each vertex
 - $|\mathcal{R}|$ potentially outgoing edges
 - Each edge $\mathbf{r}^i, i = 1, \ldots, |\mathcal{R}|$
 - Incident from \mathbf{x}_i
 - Incident to $\mathbf{y}_i = [\mathbf{x}_i - \mathbf{r}^i]^+$

\[
\mathbf{r}^3 = \begin{bmatrix}
2 \\
2
\end{bmatrix}
\]
An Example

\[\mathbf{r}^1 = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \]
An Example

\[
\begin{align*}
\mathbf{r}^1 &= \begin{bmatrix} 1 \\ 6 \end{bmatrix} \\
\mathbf{r}^2 &= \begin{bmatrix} 0 \\ 6 \end{bmatrix} \\
\mathbf{r}^3 &= \begin{bmatrix} 2 \\ 4 \end{bmatrix}
\end{align*}
\]

\[
\mathbf{r}^2 = \begin{bmatrix} 0 \\ 3 \end{bmatrix}
\]
An Example

\[
\begin{align*}
\mathbf{r}^3 &= \begin{bmatrix}
2 \\
2
\end{bmatrix}
\end{align*}
\]
An Example
An Example
An Example

[Diagram with matrices and vectors]

\[
\begin{bmatrix}
4 \\
0 \\
\end{bmatrix}, \quad
\begin{bmatrix}
0 \\
6 \\
\end{bmatrix}, \quad
\begin{bmatrix}
1 \\
6 \\
\end{bmatrix}, \quad
\begin{bmatrix}
4 \\
3 \\
\end{bmatrix}, \quad
\begin{bmatrix}
1 \\
3 \\
\end{bmatrix}, \quad
\begin{bmatrix}
0 \\
3 \\
\end{bmatrix}, \quad
\begin{bmatrix}
1 \\
0 \\
\end{bmatrix}, \quad
\begin{bmatrix}
0 \\
1 \\
\end{bmatrix}, \quad
\begin{bmatrix}
0 \\
0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
4 \\
6 \\
\end{bmatrix}, \quad
\begin{bmatrix}
2 \\
4 \\
\end{bmatrix}, \quad
\begin{bmatrix}
0 \\
4 \\
\end{bmatrix}, \quad
\begin{bmatrix}
2 \\
1 \\
\end{bmatrix}, \quad
\begin{bmatrix}
2 \\
0 \\
\end{bmatrix}, \quad
\begin{bmatrix}
0 \\
2 \\
\end{bmatrix}
\]
An Example
An Example
Combinatorially Complex Problem

- Minimum-length scheduling is a shortest path problem
- For a Directed Acyclic Graph \(G = (V, E) \)
 - Overall running time of finding a shortest path is \(\Theta(|V| + |E|) \)
 - \(|V| \) and \(|E| \) grow exponentially
 - As the number of transmitters increases
 - As initial demands grow

- Minimum-length scheduling
 - Hard **discrete optimization problem**
 - Solution alternatives
 - Brute force
 - Heuristics
 - Search space **reduction**
Time-Varying Channels (Perfect CSI)

Assumptions
- Channel evolves according to a finite state Markov Chain
- Network control policy
 - Knows the channel state at each slot
 - Takes decisions based on current channel state and queue sizes

Objective
- Minimize expected number of slots to empty all queues at sources
- Problem can be formulated through Stochastic Shortest Paths (special case of Markov Decision Processes - MDPs)
 - **State Space:** Set of pairs of channel states and queue sizes
 - **Terminating States:** States corresponding to all queues being empty
 - **Action Space:** Set of $2^K - 1$ rate control and scheduling vectors
 - **Cost:** Unitary cost for taking any action from non-terminating states
 - **System Dynamics:** Depend on transition probability of channel process
- Optimal solution satisfies Bellman’s equations
Numerical Results

- 2 source/destinations
- Feasible rates
 - Good state:
 \[
 \begin{bmatrix}
 3 \\ 0 \\
 \end{bmatrix}
 \begin{bmatrix}
 0 \\ 3 \\
 \end{bmatrix}
 \begin{bmatrix}
 2 \\
 2 \\
 \end{bmatrix}
 \]
 - Bad state:
 \[
 \begin{bmatrix}
 2 \\ 0 \\
 \end{bmatrix}
 \begin{bmatrix}
 0 \\ 2 \\
 \end{bmatrix}
 \begin{bmatrix}
 1 \\
 1 \\
 \end{bmatrix}
 \]
Time-Varying Channels (Imperfect CSI)

- **Assumptions**
 - Channel evolves according to a finite state Markov Chain
 - Network control policy
 - Knows the probability distribution of the channel process
 - Transmissions fail due to the uncertainty about the exact channel state
 - Policy has access to feedback regarding the transmission outcome

- **Objective**
 - Minimize expected number of slots to empty all queues at sources
 - Problem can be solved through Partially Observable MDPs
 - **State Space**: Set of pairs of channel states and queue sizes
 - **Terminating States**: States corresponding to all queues being empty
 - **Action Space**: Set of rate control and scheduling vectors corresponding to all possible channel realizations
 - **Observations** $\{0, 1\}$: Indicate the outcome of a transmission
 - **Cost**: Unitary cost for taking any action from non-terminating states
 - **System Dynamics**: Depend on transition probability of channel process and observation probabilities
Numerical Results

- **Solution**
 - Map the problem to one with full observability
 - Solution through dynamic programming
 - Computing the optimal policy is prohibitive
 - Heuristics are necessary

- **Heuristics**
 I. Maximum Likelihood Heuristic
 \[\pi_{MLH}(\omega(t)) = \pi^*_{MDP}(\arg\max_{\ell \in S}(\omega_\ell(t))) \]
 II. Voting Heuristic
 \[\pi_{VH}(\omega(t)) = \arg\max_r \sum_{\ell \in S} \omega_\ell(t) \delta(\pi^*_\ell - r) \]

where \(\omega_j(t) \) is the conditional probability that the system is in state \(j \) given the set of actions and observations up to slot \(t \)
Concluding Remarks

- Considered the problem of minimum-length scheduling
 - For stationary channels
 - Time-varying channels under perfect channel state information
 - Time-varying channels under imperfect channel state information
- Minimum-Length Scheduling is a useful alternative objective also for non-ergodic, non-stationary environments
- Tightly related to throughput maximization
- Possible generalizations
 - Multi-hop networks
 - Decentralized algorithms
 - Tackle non-stationarity and non-ergodicity