The Turbo Principle in Wireless Communications

Joachim Hagenauer
Institute for Communications Engineering (LNT)
Munich University of Technology (TUM)
D-80290 München, Germany

Nordic Radio Symposium, Oulu, Finland, August 17th, 2004
The turbo principle and its applications
Log-Likelihood Ratios (LLR) and the APP Decoders
Extrinsic Information Transfer (EXIT) charts
Turbo applications: Coded equalization of multipath channels
Turbo applications: Precoded QAM with irregular channel codes
Turbo applications: Coded MIMO systems
Conclusions
Introduction

History:

- **1948**: Shannon’s absolute limits in communications, e.g. 0.2 dB in E_b/N_0 for binary codes with rate 1/2 on AWGN channel
- **1962**: Gallager’s low density parity check codes with iterative decoding
- **1966**: Forney: Concatenated codes
- **before 1993**: Concatenated codes (Viterbi plus RS codes) approach Shannon’s limit by by 2.5 dB and with iterations by 1.5 dB.
- **1993**: Berrou, Glavieux and Thitimajshima: Turbo decoding approaches Shannon’s limit by 0.5 dB.
- **1995**: Douillard, Glavieux, Berrou et al: Turbo equalization
- **1997**: Turbo principle recognized as general method in communications systems
- **2001**: Chung, Forney, Richardson, Urbanke: Iterative decoding of Irregular LDPC Codes within 0.0045 dB of Shannon limit
Introduction

The Turbo Principle comprises...

- ... a communication system with serial and/or parallel concatenations of components
- ... a posteriori probability (APP) symbol-by-symbol decoders/detectors
- ... soft-in/soft-out decoders/detectors
- ... interleavers between the components
- ... exchange of extrinsic information between components in the form of probabilities or log-likelihood ratios
The Turbo Principle ...

... in mechanics
The Turbo Principle ...

... in mechanics

... in communications
Serial Concatenation

Transmitter

Encoder I → Inter-leaver → Encoder II

Receiver

Decoder II → Deinter-leaver → Decoder I

data estimate

AWGN

LNT
Examples for serial concatenation in communication systems

<table>
<thead>
<tr>
<th>configuration</th>
<th>en-/decoder I (outer code)</th>
<th>en-/decoder II (inner code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>serial code concat.</td>
<td>FEC en-/decoder</td>
<td>FEC en-/decoder</td>
</tr>
<tr>
<td>turbo equalization</td>
<td>FEC en-/decoder</td>
<td>Multipath channel/detector</td>
</tr>
<tr>
<td>turbo BiCM</td>
<td>FEC en-/decoder</td>
<td>Mapper/demapper</td>
</tr>
<tr>
<td>turbo MIMO</td>
<td>FEC en-/decoder</td>
<td>Mapper & MIMO detector</td>
</tr>
<tr>
<td>turbo multiuser</td>
<td>FEC en-/decoder</td>
<td>SISO multiuser detector</td>
</tr>
<tr>
<td>turbo source-channel</td>
<td>source encoder</td>
<td>FEC en-/decoder</td>
</tr>
<tr>
<td>LDPC code/decoder</td>
<td>check nodes</td>
<td>variable nodes</td>
</tr>
</tbody>
</table>
Log-Likelihood Ratios and the APP Decoders:

Let u be in GF(2) with the elements $\{+1, -1\}$, where $+1$ is the ‘null’ element under the \oplus addition.

The log-likelihood ratio (LLR) or L-value of the binary variable is

$$L(u) = \ln \frac{P(u = +1)}{P(u = -1)}$$ \hspace{1cm} (1)

with the inverse

$$P(u = \pm 1) = \frac{e^{\pm L(u)/2}}{e^{+L(u)/2} + e^{-L(u)/2}}.$$ \hspace{1cm} (2)

Note: The sign of $L(u)$ is the hard decision and the magnitude $|L(u)|$ is the reliability of this decision.
The soft bit and the binary sum

The soft bit \(\lambda(u) \) is

\[
\lambda(u) = E\{u\} = (+1) \cdot P(u = +1) + (-1) \cdot P(u = -1) = \tanh(L(u)/2).
\]

GF(2) addition \(u_1 \oplus u_2 \) of two independent binary random variables:

\[
E\{u_1 \cdot u_2\} = E\{u_1\}E\{u_2\} = \lambda(u_1) \cdot \lambda(u_2).
\]

L value of the sum:

\[
L(u_1 \oplus u_2) = 2\tanh^{-1}(\tanh(L(u_1)/2) \cdot \tanh(L(u_2)/2)) = L(u_1) \boxplus L(u_2).
\]

with the boxplus \(\boxplus \) abbreviation.
Transmission and combining after fading/AWGN channels

The a posteriori probability (APP) in \(y = ax + n \) is

\[
P(x|y) = \frac{p(y|x)P(x)}{p(y)}
\]

with the pdf

\[
p(y|x) = \frac{1}{\sqrt{2\pi\sigma_c^2}} e^{-\frac{(y-ax)^2}{2\sigma_c^2}}
\]

The complementary APP LLR equals

\[
L_{CH} = L(x|y) = \ln \frac{P(x = +1|y)}{P(x = -1|y)} = L_c \cdot y + L(x).
\]

\(L(x) \) is the a priori LLR of \(x \) and \(L_c \) is the channel state information (CSI):

\[
L_c = \frac{2a}{\sigma_c^2} = \frac{4aE_s}{N_0}
\]

For statistically independent transmission

\[
L(x|y_1, y_2) = L_{c_1}y_1 + L_{c_2}y_2 + L(x).
\]
Practical Usefulness of Log-Likelihood Calculation

Did it rain in Helsinki at 8:00 am today?
A Yes (rain!) is binary coded as +1, transmitted over an unreliable link.
Two rain detection devices measured:

\[x_1 = +1 \]
\[x_2 = +1 \]

Additional a priori value is available: From Farmer’s Almanac:
Probability of rain in Helsinki today is 75%

\[L(x) = \ln(0.75/0.25) = +1.1 \]

<table>
<thead>
<tr>
<th>transmitted value</th>
<th>received value</th>
<th>channel state</th>
<th>(L_c)</th>
<th>(L_{cy})</th>
</tr>
</thead>
<tbody>
<tr>
<td>link 1</td>
<td>+1.0</td>
<td>-1.5</td>
<td>2.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>link 2</td>
<td>+1.0</td>
<td>+0.9</td>
<td>3.0</td>
<td>+2.7</td>
</tr>
<tr>
<td>a priori</td>
<td></td>
<td></td>
<td></td>
<td>+1.1</td>
</tr>
</tbody>
</table>

For statistically independent information

\[L(x|y_1, y_2) = L_{c1}y_1 + L_{c2}y_2 + L(x) = +0.8 \text{ with 31\% error: rain in Helsinki!!} \]
The extrinsic information as a LLR

Assume a parity check equation of statistically independently transmitted bits x_j

$$\sum_{j=1}^{j=N} x_j = 0. (+1)$$

Then the extrinsic bit x_i equals

$$x_i = \sum_{j=1,j\neq i}^{j=N} x_j$$

and consequently the extrinsic LLR for this bit given the APP LLR's $L(x_j|y_j)$ of all the other bits equals

$$L_E(x_i) = \sum_{j=1,j\neq i}^{j=N} L(x_j|y_j)$$

Example:
SPC code, $N = 3$, with $L(x_2|y_2) = -0.3$, $L(x_3|y_3) = -5.5$. Then the extrinsic LLR for the first bit is

$$L_E(x_1) = -0.3 \uplus - 5.5 \approx +0.3.$$
Low Density Parity Check (LDPC) codes and their Turbo decoder

A low density parity check code of rate k/n can be described as a serial concatenation of n variable nodes as inner repetition codes with $n - k$ check nodes as outer single parity check nodes.
Irregular LDPC codes and their Turbo decoder (cnt’)

i-th variable node (i-th code bit) with $d_{v,i}$ connections. $n - k$ check nodes where the i-th checks $d_{c,i}$ bits.

More than one extrinsic message

$$L^{(\text{out})}_{i,j} = L_{c,i} \cdot y_i + \sum_{j=1,j\neq i}^{d_{v,i}} L^{(\text{in})}_{i,j}$$ \hspace{1cm} (8)

per code bit $x_i, i = 1...n$ is sent to the outer single parity check (SPC) decoders. The SCPC decoders return for $i = 1...n - k$

$$L^{(c,\text{out})}_{i,j} = \sum_{j=1,j\neq i}^{d_{c,i}} \bigoplus_{j=1,j\neq i} L^{(c,\text{in})}_{i,j}$$ \hspace{1cm} (9)

The decoding result is the overall L value of the inner bits.
Principle of Turbo Decoding for a parallel concatenated scheme.

Exchange of extrinsic information between horizontal and vertical decoding.

- Received LLR
- Information bits I
- Vertical Decoding
- $L_A = L_E$
- $L_A = L_E^1$
- Extrinsic LLR
- Horizontal Decoding
- p
- L_E
- L_E^1
Showing the chaotic behavior of Turbo decoding in a demonstration

- The turbo decoder decodes a parallel concatenated rate 1/2 code with memory 2, rate 2/3 convolutional code as constituent codes.
- Block interleaver: size 20 x 20 = 400 information bits, 800 transmitted bits.
- Decoder: SOVA algorithm with L-values.
- Shown are the soft-output L-values of the information bits after each half iteration.
- Display shows 20 x 20 interleaver matrix with
 - Red Circles for wrong bits
 - Green circles for correct bits
- Diameter of circles is the reliability (magnitude of L-values).
- Goal of decoding:
 - Big green circles !!!
Properties of LLR

The pdf’s and the LLR’s have the following properties

- The matched filter output y is Gaussian with
 \[\mathcal{N}(m, \sigma_c^2) = \mathcal{N}(\pm a, \sigma_c^2) \]

- the APP LLR L_{CH} is also Gaussian with
 \[\mathcal{N}(\pm \sigma_{CH}^2/2, \sigma_{CH}^2) \]
 where $\sigma_{CH}^2 = 2aL_c$ and is determined by one parameter.

- the matched filter output has a symmetric pdf
 \[p(-y|x = +1) = p(y|x = -1) \]
 and is a LLR

- all LLR with symmetric distributions satisfies the consistency condition
 \[p(-y|x) = e^{-L_{xy}}p(y|x). \]
The Extrinsic Information Transfer (EXIT) chart

The mutual information between the equally likely X and the respective LLR’s L for symmetric and consistent L-values simplifies to

\[I(L; X) = 1 - \int_{-\infty}^{+\infty} p(L|x = +1) \log_2(1 + e^{-L}) dL \]

\[I(L; X) = 1 - E\{\log_2(1 + e^{-L})\} \]

The expectation is over the one parameter distribution

\[p(L|x = +1) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-(L-x\sigma^2/2)^2/2\sigma^2} \]

In case of \(L_E \) the expectation is over the measured generally non-Gaussian distribution:

\[1 - E\{\log_2(1 + e^{-L})\} \approx 1 - \frac{1}{N} \sum_{n=1}^{N} \log_2(1 + e^{-x_n L_{E,n}}) \]
Measurement of the EXIT chart

Experimental measurement from N samples $x_n \cdot L_{E,n}$ which are corrected for positive x by evoking the ergodic assumption

$$I(L; X) = 1 - \frac{1}{N} \sum_{n=1}^{N} \log_2(1 + e^{-x_n L_{E,n}})$$

The lower part of the diagram is the a priori channel channel. Assumption for the EXIT charts:
Large interleavers to assure statistical independence.
Options for the a priori channel

We can model the a priori channel in several ways as

- an AWGN channel (see previous figure). Here we assume that the soft output of the other constituent decoder to be a consistent normally distributed LLR.

- a BEC with erasure probability ϵ. Here we assume the the other constituent decoder to be a genie aided decoder which converts errors into erasures. This genie aided decoder is the optimal (however unrealizable) SISO decoder. We replace the AWGN a priori channel by a multiplicative channel with an i.i.d. factor

\[
a_n = \begin{cases}
\infty & \text{with probability } \ 1 - \epsilon \\
0 & \text{with probability } \ \epsilon
\end{cases}
\]

Then the the mutual information becomes

\[
I(L; X) = 1 - \frac{1}{N} \sum_{n=1}^{N} \log_2(1 + e^{-a_n}) = 1 - \epsilon
\]

as it should be.
The Extrinsic Information Transfer (EXIT) Chart

Pioneered by Stephan ten Brink the information transfer for turbo decoding and the performance of turbo decoding in the fall-off region can be visualized by the EXIT Chart:

The information transfer function T is measured as

$$I(L_E; X) = T(I(L_A; X))$$

- The assumption is a large interleaver to assure statistical independence and Gaussian distribution for the input L_A with parameter $\sigma_a^2 \leftrightarrow I(L_A; X)$.

- For inner decoders in a serial concatenated scheme and for parallel concatenated schemes the additional parameter input is L_{CH} and σ_{CH}^2, the channel SNR or $I(L_{CH}; X)$ appears as parameter.

- For outer decoders in a serial concatenation only $L_{A}^{(o)}$ appears as input which is taken from the interleaved serial $L_{E}^{(i)}$.
Example of an EXIT chart

Parallel concatenated system with single parity check component codes SPC(n-1,n,2) on the AWGN channel: For bit $x_1 = x_2 \oplus x_3$ the extrinsic value is

$$L_E = (L_{CH,2} + L_A) \oplus L_{CH,3}.$$

For the parallel decoder the transfer function with axes are swapped. The iteration alternates between these curves.

The difference $I(L_E; X) - I(L_A; X)$ meaning the difference to the diagonal is the average information gain measured in bits per half iteration.
Observations with EXIT charts

Capacity property: if $R_{II} = 1$ then the area under the white area is

$$\int_0^1 T_{II}(i) \, di \approx C_{ui}$$

Rate property: if decoder is APP based then the blue area is

$$\int_0^1 T_I^{-1}(i) \, di \approx R_I$$

Red Area = $\int_0^1 (T_{II}(i) - T_I^{-1}(i)) \, di > 0 \Rightarrow R_I < C_{ui}$

These properties were proven by Ashikhmin, Kramer, ten Brink for an a priori channel with a BEC model.
Turbo applications: Coded equalization of multipath channels

- Channel II: Static multipath, memory $L = 4$ with taps $\{h_l\} = \{0.32, 0.63, 0, 0.63, 0.32\}$, Modulation: BPSK, SNR of 4 dB

- Metric:

$$\ln p(y_k \mid u_k) = B_{M_k} - \frac{1}{2\sigma^2} |y_k - \sum_{l=0}^{L} x_{k-l} h_l|^2,$$

EXIT Chart II: Behavior of the Channel

(code rate: 0.5)
Outer irregular code matched to inner EXIT chart: MT,JH CISS 2002

Construction method:

Convolutional code, memory 4 (16 states), punctured to $L_R = 7$ rates (4/12, 5/12, 6/12, 7/12, 8/12, 9/12, 10/12)

Constraints on the α_k in this FEC code:

$$\sum_{k=1}^{L_R} \alpha_k = 1,$$

$$\sum_{k=1}^{L_R} \alpha_k R_k = 1/2, \text{ and } \alpha_k \in [0, 1], \ k = 1, ..., L_R.$$

Since the L-values of all subcode decoders are symmetric and consistent the overall transfer function I is

$$T_I(i) = \sum_{k=1}^{L_R} \alpha_k T_k(i).$$
Outer Code matched to inner multipath EXIT chart

Optimization criterion:
Find the set \(\{\alpha_i\} \) in such a way that the curves I and II keep a reasonable open tunnel for the iterations

EXIT Chart II for multipath channel
EXIT Chart I for optimized irregular code

code rate: 0.5
Outer Code matched to inner multipath channel

Iteration Trajectory Tunnel closes at rate 0.565

code rate: 0.5
Turbo applications: QAM with channel codes

Diagram:

- Data enters outer encoder, then \(\pi \) to S/P modulator.
- Data is channel-coded and transmitted through the channel.
- S/P demodulator receives the signal and passes it to the channel.
- Channel output is sent to the outer decoder.
- The outer decoder receives the channel-coded data and decodes it using \(\pi^{-1} \) and data estimate.
- The outer decoder then passes the decoded data to the S/P encoder.
- The outer encoder passes the data to the channel using the \(\pi \) function.
Turbo applications: 16-QAM with channel codes, rate 1/2, memory 2

EXIT CHART for different mappings

16QAM, $E_b/N_0 = 4\text{dB}$

- Gray
- MSP
- MSEW

(1 5/7), rate–1/2 convolutional code
Turbo applications: Precoded QAM with channel codes

Problem: Iterations between inner QAM and outer channel code do not reach the error free point \((I_A, I_E) = (1.0, 1.0)\).

Solution: Differential Precoding:

The inner 'code' is a rate 1 (no redundancy added) differentially precoded QAM mapper
Iterations with **precoded** 16-QAM

\[\frac{E_s}{N_0} = 7\text{dB} \]

16QAM with precoder

(1 5/7) convolutional code

mutual information \(I_{ap} \) at output of demapper

mutual information \(I_e \) at output of demapper

mutual information \(I_{ap} \) at input of demapper
Summary of optimizations (c.f. Michael Tüchler)

Inner channel: Precoded QAM
Outer channel: Irregular channel codes

![Achievable information rate vs. E_s/N_0 graph]

- Capacity for Gaussian input
- Capacity for x-PSK, x-QAM input
- Threshold using optimized irregular codes

- QPSK
- 8PSK
- 16QAM
- 32QAM
- 64QAM
Inner channel:
Multiple-Input/Multiple Output (MIMO) Antenna System with QAM

Outer channel: Irregular or standard channel codes
Turbo applications: Coded system: Inner MIMO channel

Channel matrix \mathbf{H} contains the complex ergodic channel coefficients $h_{k}^{(i,j)}$.

Input to the turbo scheme: bit vector of size $M \cdot N \times 1$

$$\mathbf{x} = (x_1, ..., x_n, ..., x_N)^T$$

with the M-bit row vectors of size $1 \times N$

$$\mathbf{x}_n = (x_{1,n}, ..., x_{m,n}, ..., x_{M,n}), \quad x_{m,n} \in \{+1, -1\}.$$

The constellation mapper maps M bits to one complex signal element $s_n(\mathbf{x}_n)$ of the signal vector $\mathbf{s}(\mathbf{x})$

After transmission the received vector

$$\mathbf{y} = \mathbf{H} \cdot \mathbf{s}(\mathbf{x}) + \mathbf{n}_0$$
Turbo applications: Coded system: Inner MIMO channel

Symbol APP detector soft-output all NM bits

\[L(\hat{x}_{m,n}) = \ln \frac{\sum_{x_{m,n}=+1} e^{-\frac{1}{2\sigma^2}\|y-Hs(x)\|^2 + \frac{1}{2}L(x)^T x}}{\sum_{x_{m,n}=-1} e^{-\frac{1}{2\sigma^2}\|y-Hs(x)\|^2 + \frac{1}{2}L(x)^T x}}. \]

\(L(x) \) are the a priori values of all bits from the turbo feedback of the outer decoder.

Evaluation for all \(2^{MN} \) possible data is prohibitively complex.

Example: 32-QAM with 4 antennas: \(2^{20} \) values
Turbo applications: Coded system: Inner MIMO channel

SOLUTION: List sequential decoder LISS

Find a candidate list of transmit vectors x with the highest metrics and evaluate the soft-output only for those candidates.

Search for candidates:

- compute the center (zero forcing) solution
 \[\hat{s}(y) = H^H (H^H H)^{-1} y \]

- Apply Cholesky factorization to obtain a lower triangular matrix L
 \[L^H L = H^H H. \]

- Obtain an additive metric with increment
 \[\lambda_n = - \left| \sum_{j=1}^{n} \frac{\ell_{n,j}}{2\sigma^2} (s(x_j) - \hat{s}_j) \right|^2 + \sum_{m=1}^{M} \frac{1}{2} x_{m,n} L(x_{m,n}). \]

- Use sequential search with the stack algorithm and augment paths to full length
Turbo applications: Coded MIMO system:

Inner MIMO channel with LISt Sequential decoder (LISS)

Simulation results: outer PCC code $r = 1/2$, QPSK, $n_T = n_R = 4$, $L_{\text{max}} = 256$, number of candidates with and without stack augmentation.
Coded Multiuser System with Turbo LISS Detector

Inner Rayleigh-Fading channel with LISS-detector

$K = 32$ users with random spreading codes of length $N = 32$
outer conv. code $r = 1/2$, BPSK.
Coded Multiuser System with Turbo LISS Detector

Simulation results: Inner Rayleigh-Fading channel with LISS-detector, stack size 256, aux. stack size 128

\(K = 32 \) users with random spreading codes of length \(N = 32 \)

outer conv. code \(r = 1/2 \), BPSK.
Conclusions

- The Turbo Principle is a very general principle
- Most mobile communications schemes employ serial concatenation
- Extrinsic Information Transfer (EXIT) charts are very useful tools
- Approaching the capacity limits is possible
- Drawback: Large interleavers are necessary for optimum performance and analysis
- For systems with high number of states new sequential soft-in/soft-out decoders are presented
- There are many more applications to the Turbo Principle:
 - Turbo source compression
 - Joint source channel coding
 - Interference cancellation
 - Analog decoding