Feasibility of DVB-H Deployment on Existing Wireless Infrastructure

INTERNATIONAL WORKSHOP ON CONVERGENT TECHNOLOGIES (IWCT) 2005

David Gómez-Barquero
Mobile Communications Group
Polytechnic University of Valencia (UPV)
dagobar@iteam.upv.es

Aurelian Bria
Radio Communications Systems Lab
Royal Institute of Technology (KTH)
aurelian@radio.kth.se
OUTLINE

• Motivation
• **DVB-H** Network Deployment
• System Model
• Simulation Results
• Conclusions

Digital
Video
Broadcast
Handhelds

Feasibility of DVB-H Deployment on Existing Wireless Infrastructure
MOTIVATION

• “… mass market demand for mobile multimedia entertainment is conditioned to the low cost provision of these services.”

• DVB-H allows IP broadcasting to mobile phones based on DVB-T (Digital Video Broadcast – Terrestrial)

• DVB-H is a good candidate for the provision of mobile multimedia services at low cost BUT
 – Much more severe propagation conditions than DVB-T
 – Requirement of similar coverage levels than 2G/3G

THUS
 – Higher powers or/and more transmitters will be required
 – Need for efficient network deployment of DVB-H!

➢ Investigate the feasibility of deploying DVB-H on existing wireless infrastructure to provide indoor coverage
DVB-H Network Deployment

- **DVB-H Network Configurations:**
 - **Shared Network**
 * Shared multiplex with DVB-T
 * DVB-T and DVB-H share the capacity of the RF channel
 * One transport stream
 - **Hierarchical Network**
 * Shared multiplex with DVB-T
 * Hierarchical modulation
 * DVB-T in the High Priority stream
 * DVB-H in the Low Priority stream
 - **Dedicated Network**
 * Exclusive use for DVB-H
DVB-H Network Deployment

Main Problem:
- Existing broadcasting infrastructure might **NOT** be able to transmit the required powers due to electromagnetic exposure limits
 - Very high operational costs for power levels ~50-60 dBWs
- **Additional transmitters are a must**
 - Possible solution to reduce costs: *re-use cellular infrastructure*

Shared and Hierarchical configurations:
- **DVB-H** indoor coverage **DVB-T** indoor portable coverage
- **DVB-T** networks planned for rooftop reception

Dedicated configuration:
- **Most suitable**
 - Optimized for the desired capacity and coverage
System Model

Existing Wireless Infrastructure:
- **Broadcasting**: TV towers
- **Cellular**: 2G/3G sites

DVB-H System Parameters:
- Shared: “French mode” 22.1 Mbps
 - 8K, GI 1/8, 64QAM 2/3
- Dedicated: 10 Mbps, no MPE-FEC
 - 4K, GI 1/4, 16QAM 1/2

Link Budget Parameters:
- Indoor coverage @ 700 MHz

receiver synchronized to closest transmitter

TV Tower 150 m
Cellular Site 35 m
Cellular Site not used

R = 25 km
R_{cl} = 3.5 km
Results (I)

- Only Broadcasting Infrastructure (Shared and Dedicated):
 - Coverage targets: **DVB-T** 99%, **DVB-H** 95%.

 “Coverage Area Radius vs. Power from the TV Tower”

- Huge differences in link budget between
 - **DVB-T** rooftop
 - **DVB-H** indoor

- Shared: ~40 dB
- Dedicated: ~30 dB

- **DVB-H** outdoor +7 dB
Results (II)

- Only Broadcasting Infrastructure (Shared and Dedicated):
 - Service area radius 25 km. **DVB-H** indoor coverage 95%.
 - "Coverage vs. Power from the TV Tower"

- Power Levels:
 - Shared **DVB-T rooftop**: 30 dBW
 - Dedicated **DVB-H indoor**: 60 dBW

- Coverage levels > 80% more difficult to achieve
Results (III)

- Broadcasting and Cellular Infrastructure (Dedicated):
 - Service area radius 25 km. **DVB-H** indoor coverage 95%.

 "**Required power per DVB-H cellular site as a function of the cell radius of the cellular network**"

- Coverage from TV tower:
 - 40 dBW: 37%
 - 50 dBW: 73%

- Number of Sites:
 - Radius 2.5 km: 109
 - Radius 5 km: 31

 ➤ For 5 km cell radius power levels > 30 dBW
 ➤ Lower cell radii!
Results (IV)

• Broadcasting and Cellular Infrastructure (Dedicated):
 – Service area radius 25 km. DVB-H indoor coverage 95%.
 – Radius cellular network 2.5 km.

“Required power per DVB-H cellular site as a function of the number of cellular sites employed”
Conclusions

- Very high power levels are required at the broadcasting sites for achieving **DVB-H indoor coverage**
- **Re-using cellular sites** is a valid solution to avoid excessive powers at the broadcasting sites
- The required **powers** at the **cellular sites** might not be acceptable for health concerns (e.g. more than 30 dBW) for typical sub-urban cell radii (e.g. 5 km)
- For **smaller cell radii** (e.g. 2.5 km) the power levels are feasible, but the required **number of sites** is large

- **Power Limits + Cost Model**
 - **Minimum Cost Deployment**
Thanks for your attention!
Questions?

INTERNATIONAL WORKSHOP ON CONVERGENT TECHNOLOGIES (IWCT) 2005

David Gómez-Barquero
Mobile Communications Group
Polytechnic University of Valencia (UPV)
dagobar@iteam.upv.es

Aurelian Bria
Radio Communications Systems Lab
Royal Institute of Technology (KTH)
aurelian@radio.kth.se