NETWORKING GAMES, WARDROPE EQUILIBRIUM AND OPTIMAL ROUTING

Vladimir Mazalov, Prof., Ph.D., Dr. Sci.
Karelian Research Centre of the Russian Academy of Sciences

At the University of Oulu
11 – 15 April 2011

Many real problems in modern networks and supercomputing such as resource distribution, scheduling and routing, spam fighting, etc. can be solved by game-theoretic methods. The players here can be the users, the jobs, the packages, etc. Networking games can be divided for two classes in respect of the traffic being divided (Wardrobe games) or not (KP models) for units. The players can use the selfish and cooperative strategies. Selfish players have different utility functions (for instance, latency functions of linear, quadratic or exponential form) and the main problem here is to find the equilibrium. That is a part of congestion games. We will consider the main methods of congestion and potential games. For general networks we find the potential functions and use it to construct the Nash equilibrium. Cooperative agents are interested in maximizing the common utility. Comparison of these costs is estimated by the price of anarchy. We present the different approaches how to find it. We consider the Braess paradox and discuss the conditions for its existence. Some examples of real networks are presented. Topics will include:

- Game theory definitions, cooperative and non-cooperative games;
- Bargaining theory and decision making;
- Normal and extensive form games, Nash equilibrium, Subgame perfect equilibrium;
- Congestion and potential games; Braess paradox
- Models of cooperation and selfish behavior among users;
- Routing games and Wardrobe equilibrium. Price of Anarchy;
- Optimal bandwidth allocation;
- Equilibrium in queuing; and
- Economic models in networking.

Vladimir V. Mazalov currently is the Head of the Institute of Applied Mathematical Research, Karelian Research Center of Russian Academy of Sciences, Petrozavodsk, Russia. He is also a Professor of Petrozavodsk State University in Russia. Prof. Mazalov’s research focuses on networking games, routing problems, distributed and adaptive resource management in wireless networks, and the application of game theory to networks. He is currently a principal investigator on research projects funded by the Russian Fund for Basic Research. Prof. Mazalov research was supported by Swiss National Research Foundation, Japan Society for Promotion of Science, DAAD, Swedish Institute,

Andrei Gurtov, PhD
Professor, CWC, University of Oulu
Principal Scientist, Helsinki Institute for Information Technology (HIIT) (on leave)
http://www.ee.oulu.fi/~agourtov