On the Value of Coherent and Coordinated Multi-point Transmission

Antti Tölli, Harri Pennanen and Petri Komulainen
atolli@ee.oulu.fi

Centre for Wireless Communications
University of Oulu

December 4, 2008
Motivation

- Conventional cellular systems are interference limited
 - In-cell users are processed independently by each base station (BS)
 - Other users are treated as inter-cell interference
 - Interference mitigated by sharing and reusing available resources

- Coordinated multi-point transmission (CoMP) with multi-user precoding
 - Increased spatial degrees of freedom in a multi-user MIMO channel
 - A system with N distributed antennas can ideally accommodate up to N streams
 - Inter-stream interference can be controlled or eliminated by a proper beamformer design.
 - Coherent multi-cell MIMO: user data transmitted over a large virtual MIMO channel
Coordinated Multi-point Transmission

- Distributed antenna system based on, e.g. Radio over Fibre (RoF)
 - Capability of joint control of the signals at multiple cells
Coordinated Multi-point Transmission

- Complete *channel state information* (CSI) of all jointly processed links (ideally) needed
- **Centralised RRM** mechanisms to perform scheduling and precoding

Coherent multi-cell transmission
- Each data stream may be transmitted from multiple nodes
- **Tight synchronisation** across the transmitting nodes (common phase reference)
- A high-speed backbone network, e.g. Radio over Fibre

Non-coherent multi-cell processing
- Dynamic multi-cell scheduling and inter-cell interference avoidance
- Coordinated precoder design and beam allocation
- Each data stream is transmitted from a single BS node
- No carrier phase coherence requirement
- Looser requirement on the coordination and the backhaul
Linear transceiver design

- A generalised method for joint design of linear transceivers with
 - Coordinated multi-cell processing
 - Per-BS or per-antenna power constraints
 - Subject to various optimisation criteria

- The proposed method [1] can accommodate any scenario between
 - Coherent multi-cell beamforming across virtual MIMO channel
 - Single-cell beamforming with inter-cell interference coordination and beam allocation

- The presented methods require a complete CSI between all pairs of users and BSs
 - The solution represent an upper bound for the less ideal solutions with an incomplete CSI.
System Model

Coordinated multi-cell MIMO system:

- \(N_B \) BSs, \(N_T \) TX antennas per BS and \(N_{R_k} \) RX antennas per user \(k \)
- A user \(k \) is served by \(M_k \) BSs from the joint processing set \(B_k \), \n\[B_k \subseteq B = \{1, \ldots, N_B\} \]
\[
\mathbf{y}_k = \sum_{b \in B} a_{b,k} \mathbf{H}_{b,k} \mathbf{x}'_b + \mathbf{n}_k \tag{1}
\]
\[
= \sum_{b \in B_k} a_{b,k} \mathbf{H}_{b,k} \mathbf{x}_{b,k} + \sum_{b \in B_k} a_{b,k} \mathbf{H}_{b,k} \sum_{i \neq k} \mathbf{x}_{b,i}
+ \sum_{b \in B \setminus B_k} a_{b,k} \mathbf{H}_{b,k} \mathbf{x}'_b + \mathbf{n}_k
\]
- \(a_{b,k} \mathbf{H}_{b,k} \in \mathbb{C}^{N_{R_k} \times N_T} \) channel from BS \(b \) to user \(k \)
- \(\mathbf{x}'_b \in \mathbb{C}^{N_T} \) total TX signal from BS \(b \), and
- \(\mathbf{x}_{b,k} = \mathbf{M}_{b,k} \mathbf{d}_k \in \mathbb{C}^{N_T} \) transmitted data vector from BS \(b \) to user \(k \), where
 - \(\mathbf{M}_{b,k} \in \mathbb{C}^{N_T \times m_k} \) pre-coding matrix,
 - \(\mathbf{d}_k = [d_{1,k}, \ldots, d_{m_k,k}]^T \) vector of normalised data symbols,
 - \(m_k \leq \min(N_T M_k, N_{R_k}) \) number of active data streams.
Linear Transceiver Design

- Per data stream processing: N_B BS transmitters send S independent streams, $S \leq \min(N_B N_T, \sum_{k \in U} N_{R_k})$.

- For each data stream s, scheduler associates a user k_s, with the channel matrices H_{b,k_s}, $b \in B_s$.
 - In some special cases $B_s \subseteq B_{k_s}$. For example, a user may receive data from several BSs, while $|B_s| = 1 \ \forall \ s$.

\[\gamma_s = \left| \sum_{b \in B_s} a_{b,k_s} w_{s} H_{s} H_{b,k_s} m_{b,s} e^{j\phi_b} \right|^2 + N_0 \left| w_s \right|^2 + S \sum_{i=1, i \neq s} \left| \sum_{b \in B_i} a_{b,k_s} w_{s} H_{s} H_{b,k_s} m_{b,i} e^{j\phi_b} \right|^2 (2) \]

ϕ_b represents the possible carrier phase uncertainty of BS b.

CWC | Centre For Wireless Communications
Linear Transceiver Design

- Per data stream processing: \(N_B \) BS transmitters send \(S \) independent streams, \(S \leq \min(N_B N_T, \sum_{k \in U} N_{R_k}) \)

- For each data stream \(s \), scheduler associates a user \(k_s \), with the channel matrices \(H_{b,k_s} \), \(b \in B_s \).
 - In some special cases \(B_s \subseteq B_{k_s} \). For example, a user may receive data from several BSs, while \(|B_s| = 1 \ \forall \ s \).

- Let \(m_{b,s} \in \mathbb{C}^{N_T} \) and \(w_s \in \mathbb{C}^{N_{R_{k_s}}} \) be arbitrary TX and RX beamformers for the stream \(s \)

- SINR per stream:
 \[
 \gamma_s = \frac{\left| \sum_{b \in B_s} a_{b,k_s} w_s^H H_{b,k_s} m_{b,s} e^{j\phi_b} \right|^2}{N_0 \| w_s \|_2^2 + \sum_{i=1, i \neq s}^S \left| \sum_{b \in B_i} a_{b,k_s} w_s^H H_{b,k_s} m_{b,i} e^{j\phi_b} \right|^2}
 \]

\(\phi_b \) represents the possible carrier phase uncertainty of BS \(b \)
Transceiver Optimisation with CoMP

General method for linear transceiver optimisation with CoMP:

1. Coherent multi-cell beamforming \((B_s = B_k = B \forall s, k)\) with per BS and/or per-antenna power constraints \([2, 3]\)
Transceiver Optimisation with CoMP

- General method for linear transceiver optimisation with CoMP:
 1. Coherent multi-cell beamforming ($B_s = B_k = B \ \forall \ s, k$) with per BS and/or per-antenna power constraints [2, 3]
 2. Coordinated single-cell beamforming ($|B_s| = 1 \ \forall \ s$): all transceivers are jointly optimised while considering the other-cell transmissions as inter-cell interference [4]

Optimization criteria, e.g.,

1. Weighted sum rate maximisation [3]:
 \[S \sum_{s=1}^{S} \beta_s r_s = S \sum_{s=1}^{S} \beta_s \log_2(1 + \gamma_s) \]

2. Max min weighted SINR per data stream [6]:
 \[\max \ \min_{s=1,\ldots,S} \beta_s^{-1} s \gamma_s \]

3. Maximisation of weighted common user rate [6]:
 \[r_o = \min_{k \in A} \beta_k^{-1} \sum_{s \in P_k} \log_2(1 + \gamma_s), \]
P_k is a subset of data streams that correspond to user k
Transceiver Optimisation with CoMP

- General method for linear transceiver optimisation with CoMP:
 1. **Coherent multi-cell beamforming** ($\mathcal{B}_s = \mathcal{B}_k = \mathcal{B} \ \forall \ s, k$) with per BS and/or per-antenna power constraints [2, 3]
 2. **Coordinated single-cell beamforming** ($|\mathcal{B}_s| = 1 \ \forall \ s$): all transceivers are jointly optimised while considering the other-cell transmissions as inter-cell interference [4]
 3. Any combination of above two, where $|\mathcal{B}_k|$ and $|\mathcal{B}_s|$ may be different for each user k and/or stream s.

Optimization criteria, e.g.,

1. **Weighted sum rate maximisation** [3]:
 $$S \sum_s = 1 \beta_s r_s = S \sum_s = 1 \beta_s \log_2(1 + \gamma_s)$$

2. **Max min weighted SINR per data stream** [6]:
 $$\max \min_s = 1, \ldots, S \beta_{s-1} \gamma_s$$

3. **Maximisation of weighted common user rate** [6]:
 $$r_o = \min_{k \in \mathcal{A}} \beta_{k-1} \sum_{s \in P_k} \log_2(1 + \gamma_s),$$
 P_k is a subset of data streams that correspond to user k.

Transceiver Optimisation with CoMP

- General method for linear transceiver optimisation with CoMP:
 1. **Coherent multi-cell beamforming** \((B_s = B_k = B \forall s, k)\) with per BS and/or per-antenna power constraints [2, 3]
 2. **Coordinated single-cell beamforming** \(|B_s| = 1 \forall s\): all transceivers are jointly optimised while considering the other-cell transmissions as inter-cell interference [4]
 3. **Any combination** of above two, where \(|B_k|\) and \(|B_s|\) may be different for each user \(k\) and/or stream \(s\).
Transceiver Optimisation with CoMP

- General method for linear transceiver optimisation with CoMP:
 1. **Coherent multi-cell beamforming** \((B_s = B_k = B \forall s, k)\) with per BS and/or per-antenna power constraints \([2, 3]\)
 2. **Coordinated single-cell beamforming** (**\(|B_s| = 1 \forall s\)**): all transceivers are jointly optimised while considering the other-cell transmissions as inter-cell interference \([4]\)
 3. **Any combination** of above two, where **\(|B_k|\) and \(|B_s|\) may be different for each user \(k\) and/or stream \(s\)**.

- Optimization criteria, e.g.,
 1. **Weighted sum rate maximisation** \([3]\)**:

\[
\sum_{s=1}^{S} \beta_s r_s = \sum_{s=1}^{S} \beta_s \log_2(1 + \gamma_s)
\]
Transceiver Optimisation with CoMP

- General method for linear transceiver optimisation with CoMP:
 1. **Coherent multi-cell beamforming** \((B_s = B_k = B \ \forall \ s, k) \) with per BS and/or per-antenna power constraints \([2, 3]\)
 2. **Coordinated single-cell beamforming** \((|B_s| = 1 \ \forall \ s) \): all transceivers are jointly optimised while considering the other-cell transmissions as inter-cell interference \([4]\)
 3. Any combination of above two, where \(|B_k| \) and \(|B_s| \) may be different for each user \(k \) and/or stream \(s \).

- Optimization criteria, e.g.,
 1. Weighted sum rate maximisation \([3]\):
 \[
 \sum_{s=1}^{S} \beta_s r_s = \sum_{s=1}^{S} \beta_s \log_2(1 + \gamma_s)
 \]
 2. Max min weighted SINR per data stream \([6]\):
 \[
 \max_{s=1,...,S} \min_{\beta_s} \beta_s^{-1} \gamma_s
 \]
Transceiver Optimisation with CoMP

- General method for linear transceiver optimisation with CoMP:
 1. **Coherent multi-cell beamforming** \((B_s = B_k = B \ \forall \ s, k)\) with per BS and/or per-antenna power constraints \([2, 3]\)
 2. **Coordinated single-cell beamforming** \((|B_s| = 1 \ \forall \ s)\): all transceivers are jointly optimised while considering the other-cell transmissions as inter-cell interference \([4]\)
 3. **Any combination** of above two, where \(|B_k|\) and \(|B_s|\) may be different for each user \(k\) and/or stream \(s\).

- Optimization criteria, e.g.,
 1. **Weighted sum rate maximisation** \([3]\):
 \[
 \sum_{s=1}^{S} \beta_s r_s = \sum_{s=1}^{S} \beta_s \log_2(1 + \gamma_s)
 \]
 2. **Max min weighted SINR per data stream** \([6]\):
 \[
 \max \ \min_{s=1,...,S} \beta_s^{-1} \gamma_s
 \]
 3. **Maximisation of weighted common user rate** \([6]\):
 \[
 r_o = \min_{k \in \mathcal{A}} \frac{1}{k} \sum_{s \in \mathcal{P}_k} \log_2(1 + \gamma_s),
 \]
 \(\mathcal{P}_k\) is a subset of data streams that correspond to user \(k\).
BS Coordination with Linear Processing

- Linear MIMO transceiver optimisation problems cannot be solved directly, in general – **iterative procedures** are required
 - No cooperation between users
 - Transmitter and receivers optimised separately in an iterative manner
 - Some controlled inter-user interference allowed
BS Coordination with Linear Processing

Iteration t

Transmit beamformers fixed

Receive beamformers optimised

Guaranteed bit rate users

Best effort users

Controller
BS Coordination with Linear Processing

Iteration $t+1$

Transmit beamformers optimised

Receive beamformers fixed

Guaranteed bit rate users

Best effort users

Controller
BS Coordination with Linear Processing

The general system optimisation objective is to maximise a function $f(\gamma_1, \ldots, \gamma_K)$ that depends on the individual SINR values

$$\max \ f(\gamma_1, \ldots, \gamma_S) \quad \text{s. t.}$$

$$N_0 \left\| w_s \right\|_2^2 + \sum_{i=1, i\neq s}^S \left| \sum_{b \in B_i} a_{b,k_s} w_s^H H_{b,k_s} m_{b,i} \right|_2^2 \geq \gamma_s,$$

$$s = 1, \ldots, S$$

$$\sum_{s \in S_b} \left\| m_{b,s} \right\|_2^2 \leq P_b, \quad b = 1, \ldots, N_B$$

Objective in this presentation: max. of min weighted SINR $f(\gamma_1, \ldots, \gamma_S) = \min_{s=1,\ldots,S} \beta_s^{-1} \gamma_s$

- Quasiconvex in $m_{b,s}$ [5, 6], and it can be solved optimally for fixed w_s [1]
Coordinated single-cell beamforming

- Each stream is transmitted from a single BS, $|\mathcal{B}_s| = 1 \ \forall \ s$
- A user k_s is typically allocated to $\arg \max_{b \in \mathcal{B}} a_{b,k_s}$
- Near the cell edge, the optimal beam allocation strategy depends on the channel $H_{b,k}$.
- Large gains from fast beam allocation (cell selection) available
 - A difficult combinatorial problem \rightarrow exhaustive search
 - Sub-optimal allocation algorithms

Allocation objectives
- Generate the least inter-stream interference
- Provide large beamforming gains
Heuristic Beam Allocation Algorithms

1. **Greedy selection**: Beams with the largest component orthogonal to the previously selected set of beams are chosen.
Heuristic Beam Allocation Algorithms

1. **Greedy selection**: Beams with the largest component orthogonal to the previously selected set of beams are chosen.

2. **Maximum eigenvalue selection**: The eigenvalues of channel vectors are simply sorted and at most N_T streams are allocated per cell.
Heuristic Beam Allocation Algorithms

1. **Greedy selection**: Beams with the largest component orthogonal to the previously selected set of beams are chosen.

2. **Maximum eigenvalue selection**: The eigenvalues of channel vectors are simply sorted and at most N_T streams are allocated per cell.

3. **Eigenbeam selection using maxmin SINR criterion**:

 - A simplified exhaustive search over all possible combinations of user-to-cell and stream/beam-to-user allocations
 - Beamformers matched to the channel, i.e., $m_{b,s} = v_{b,k_s} \sqrt{P_T / \lvert S_b \rvert}$
 - For each allocation, the receivers w_s and the corresponding SINR values γ_s are recalculated
 - The selection of the allocation is based on the maximum rate criterion, i.e., $\arg \max_{b,k,l} \min_{s=1}^{S} \gamma_s$.
Heuristic Beam Allocation Algorithms

1. **Greedy selection**: Beams with the largest component orthogonal to the previously selected set of beams are chosen.

2. **Maximum eigenvalue selection**: The eigenvalues of channel vectors are simply sorted and at most N_T streams are allocated per cell.

3. **Eigenbeam selection using maxmin SINR criterion**:
 - A simplified exhaustive search over all possible combinations of user-to-cell and stream/beam-to-user allocations
 - Beamformers matched to the channel, i.e.,

 - For each allocation, the receivers w_s and the corresponding SINR values γ_s are recalculated
 - The selection of the allocation is based on the maximum rate criterion, i.e.,

 $$\arg\max_{b,k,l} \min_{s=1,...,S} \gamma_s$$
Heuristic Beam Allocation Algorithms

1. **Greedy selection:** Beams with the largest component orthogonal to the previously selected set of beams are chosen.

2. **Maximum eigenvalue selection:** The eigenvalues of channel vectors are simply sorted and at most N_T streams are allocated per cell.

3. **Eigenbeam selection using maxmin SINR criterion:**
 - A simplified exhaustive search over all possible combinations of user-to-cell and stream/beam-to-user allocations
 - Beamformers matched to the channel, i.e., $\mathbf{m}_{b,s} = \mathbf{v}_{b,k_s,l_s} \sqrt{P_T/|S_b|}$
Heuristic Beam Allocation Algorithms

1. **Greedy selection**: Beams with the largest component orthogonal to the previously selected set of beams are chosen.

2. **Maximum eigenvalue selection**: The eigenvalues of channel vectors are simply sorted and at most N_T streams are allocated per cell.

3. **Eigenbeam selection using maxmin SINR criterion**:
 - A simplified exhaustive search over all possible combinations of user-to-cell and stream/beam-to-user allocations
 - Beamformers matched to the channel, i.e., $m_{b,s} = v_{b,k_s,l_s} \sqrt{P_T/|S_b|}$
 - For each allocation, the receivers w_s and the corresponding SINR values γ_s are recalculated
Heuristic Beam Allocation Algorithms

1. **Greedy selection**: Beams with the largest component orthogonal to the previously selected set of beams are chosen.

2. **Maximum eigenvalue selection**: The eigenvalues of channel vectors are simply sorted and at most N_T streams are allocated per cell.

3. **Eigenbeam selection using maxmin SINR criterion**:
 - A simplified exhaustive search over all possible combinations of user-to-cell and stream/beam-to-user allocations
 - Beamformers matched to the channel, i.e., $\mathbf{m}_{b,s} = \mathbf{v}_{b,k_s,l_s} \sqrt{P_T/|S_b|}$
 - For each allocation, the receivers \mathbf{w}_s and the corresponding SINR values γ_s are recalculated
 - The selection of the allocation is based on the maximum rate criterion, i.e., $\arg\max_{b,k,l} \min_{s=1,\ldots,S} \gamma_s$.
Simulation Cases

1. Coherent multi-cell MIMO transmission \((B_s = \mathcal{B} \ \forall \ s)\) with per BS power constraints

2. Coordinated single-cell transmission \((|B_s| = 1 \ \forall \ s)\)
 - Exhaustive search over all possible combinations of beam allocations. The SINR balancing algorithm is recomputed for each allocation.
 - Fixed allocation, i.e., user \(k_s\) is always allocated to a cell \(b\) with the smallest path loss, \(\arg \max_{b \in \mathcal{B}} a_{b,k_s}\).
 - Heuristic allocation methods

3. Non-coordinated single-cell transmission \((|B_s| = 1 \ \forall \ s)\), where the other-cell interference is assumed to be white Gaussian distributed

4. Single-cell transmission with time-division multiple access (TDMA), i.e., without inter-cell interference
Simulation Scenario

A flat fading multiuser MIMO system

- \(K = 2 - 4 \) users served simultaneously by 2 BSs
- \(\{ N_T, N_{R_k} \} = \{2-4, 1\} \)
- Equal maximum power limit \(P_T \) for each BS, i.e. \(P_b = P_T \ \forall \ b \)
- \(\text{SNR}_k = P_T \max_{b \in B} a_{b,k}^2 / N_0 \)

\[
\begin{align*}
a_{1,1} &= a_{1,2} \\
a_{1,3} &= a_{2,3} = a_{2,4}
\end{align*}
\]
Numerical Results - Full Spatial Load

(a) 0 dB single link SNR

(b) 20 dB single link SNR

Figure: Ergodic sum of user rates of \(\{K, N_B, N_T, N_{R_k}\} = \{4, 2, 2, 1\} \) system with per BS power constraint.
Figure: Ergodic sum rate of \(\{ K, N_B, N_T, N_{R_k} \} = \{2, 2, 2, 1\} \) system at 20 dB single link SNR.

Figure: Ergodic sum rate of \(\{ K, N_B, N_T, N_{R_k} \} = \{4, 2, 4, 1\} \) system at 20 dB single link SNR.
Conclusions

- A generalised method for joint design of linear transceivers with
 - Coordinated multi-cell processing
 - Per-BS or per-antenna power constraints
 - Optimisation objective: weighted SINR blancing

- The proposed method can accommodate any scenario between
 - Coherent multi-cell beamforming across virtual MIMO channel
 - Single-cell beamforming with inter-cell interference coordination and beam allocation
 - Upper bound for the less ideal solutions with an incomplete CSI.

- The coherent multi-cell beamforming greatly outperforms the non-coherent cases,
 - Especially at the cell edge and with a full spatial load.

- However, the coordinated single-cell transmission with interference avoidance and dynamic beam allocation performs considerably well with a partial spatial loading.
References

