Implementation and Complexity Analysis of List Sphere Detector for MIMO-OFDM systems

Markus Myllylä
University of Oulu, Centre for Wireless Communications
markus.myllyla@ee.oulu.fi
Outline

- Introduction
- Detection in a MIMO-OFDM system
- List Sphere Detector (LSD)
- Example case: IR-LSD implementation
- Summary and Conclusions
Introduction

- Orthogonal frequency division multiplexing (OFDM), which simplifies the receiver design, has become a widely used technique for broadband wireless systems.
- Multiple-input multiple-output (MIMO) channels offer improved capacity and potential for improved reliability compared to single-input single-output (SISO) channels.
- MIMO technique in combination with OFDM (MIMO-OFDM) has been identified as a promising approach for high spectral efficiency wideband systems.
 - 3GPP LTE, WiMax.
A MIMO-OFDM system

- OFDM based multiple antenna system with N_T transmit and N_R receive antennas
- Received signal $y = Hx + \eta$

 where H is the channel matrix,
 x is the transmitted symbol vector,
 η is a noise vector.

![A MIMO-OFDM system model](image-url)

Figure 1: A MIMO-OFDM system model
Detection in a MIMO-OFDM system

- Detection means that the detector calculates an estimate of the transmitted signal vector \mathbf{x} as an output of the detector
 - Transmitted signal vector \mathbf{x} includes N_T different symbols
- The OFDM technique simplifies the receiver structure by decoupling frequency selective MIMO channel into a set of parallel flat fading channels
 - Different data is sent in different subcarriers
- However, the reception of the signal has to done separately for each subcarrier
 - E.g. in 3GPP LTE standard 512 subcarriers (300 used) with 5MHz bandwidth (BW) and the the interval of OFDM symbol is 71μs
 - Thus, detector must calculate an estimate of $300 \times N_T$ symbols in 71μs
Detection for MIMO-OFDM (cont)

- The use of maximum a posteriori (MAP) detector is the optimal solution for soft output detection
 - In practice coded systems are used, i.e., soft output detection is applied
 - The calculation of maximum likelihood (ML) and MAP solutions with conventional exhaustive search algorithms is not feasible with large constellation and high number of transmit antennas
- Suboptimal linear minimum mean square error (LMMSE) and zero forcing (ZF) criterion based detectors feasible with reduced performance
- Sphere detectors (SD) calculate ML solution with reduced complexity
 - List sphere detector (LSD) [1] is an enhancement of SD that can be used to approximate the MAP detector
- Sphere detectors still much more complex compared to LMMSE or ZF detectors
 - Linear detectors calculate a weight matrix \mathbf{W} which can be possibly be used for multiple subcarriers and OFDM symbols
 - Depending on the channel coherence time and frequency
 - SD and LSD execute a tree search always separately for each subcarrier and OFDM symbol
List Sphere Detector

- List sphere detector [1] executes a tree search on a lattice formed by the channel matrix
 - Gives a list \mathbf{L} of candidate symbol vectors as an output
 - The candidate list can be used to approximate the soft output information $L_D(b_k)$
 - The list size $|\mathbf{L}|$ affects the quality of the approximation and depending on the list size, the LSD provides a tradeoff between the performance and the computational complexity

- Tree search algorithms divided mainly into two categories:
 - Sequential search: depth first, metric first
 + Optimal solution
 - Variable throughput, dependent on the channel realization
 - Breadth first algorithms
 + Fixed throughput
 + Can be implemented using parallel architecture
 - More complex in terms of visited nodes
 - Not an optimal solution
List Sphere Detector (cont)

- The ML solution is the vector \mathbf{x} which minimizes
 \[\hat{\mathbf{x}}_{ML} = \arg \min_{\mathbf{x}} \| \mathbf{y} - \mathbf{Hx} \|_2^2 \]

- The channel matrix \mathbf{H} is decomposed with QR decomposition (QRD) as
 \[\| \mathbf{y} - \mathbf{QRx} \|_2^2 \leq C, \]
 \[\| \tilde{\mathbf{y}} - \mathbf{Rx} \|_2^2 \leq C. \]

- Due to upper triangular form of \mathbf{R} the values of \mathbf{x} can be solved level by level.

- Thus, the SD and LSD search can be illustrated with a tree structure.

Figure 2: 2Tx antennas, 4 quadrature amplitude modulation (QAM) (real decomposition)
List Sphere Detector (cont)

- The LSD architecture consists of three main parts:
 - The preprocessing algorithm, e.g., QRD
 - The LSD algorithm, e.g., K-best algorithm
 - The LLR calculation, e.g., Max-log-MAP approximation

- Algorithm modifications for implementation:
 - Real and complex signal model compared [2]: Real model less complex in general
 - Search with limited maximum number of nodes studied [2]: Enables fixed maximum complexity for hardware implementation
 - The LLR clipping prevents the problems due to inaccurate soft output approximation [3]: Enables the use of lower list size -> Reduces required complexity

Figure 3: A high level architecture of LSD.
Example case: IR-LSD implementation

- The increasing radius (IR)-LSD implementation is introduced [4]
 - Sorted QRD
 - IR-LSD algorithm
 - Max-log-MAP approximation

- The implementation process includes different phases:
 - Algorithm modification for implementation
 - Architecture design
 - Word length study
 - Fixed-point or floating point representation
 - Register transfer level (RTL) description
 - VHDL, Verilog
 - Synthesis, and place and route
 - FPGA, DSP, ASIC
Example case: IR-LSD architecture

- The architecture includes five units
 - Two SEE and PED units
 - Final candidate memory
 - Partial candidate memory
 - Control logic unit

- Architecture operates in a sequential fashion
 - Two tree nodes calculated in one iteration
 - Variable number of iterations executed depending on the system configuration

Figure 4: The IR-LSD algorithm architecture.
Example case: IR-LSD architecture

- The LLR calculation unit applies Max-Log-MAP approximation to calculate the soft output information $L_D(b_k)$
 - Microarchitecture illustrated in Figure 5
 - Different levels of parallelism and pipelining can be applied
 - Scaling of ED values (parallel MUL)
 - The m- and k-loops logic can be implemented in parallel and with pipelining

![Figure 5: The LLR calculation unit microarchitecture.](image)
Example case: IR-LSD implementation

- A field programmable gate array (FPGA) implementation
 - 4x4 system with 16-QAM constellation
 - Fixed-point word lengths determined
 - Virtex-IV device utilization and latency numbers

TABLE I
WORD LENGTHS FOR THE IR-LSD IN A 4 × 4 SYSTEM WITH 16-QAM.

<table>
<thead>
<tr>
<th>SQRD (W,I)</th>
<th>H (11,3)</th>
<th>R (26,4)</th>
<th>Q (26,3)</th>
<th>norm (27,5)</th>
<th>sqrt() (23,3)</th>
<th>div() (21,3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSD alg. (W,I)</td>
<td>(\hat{y}) (10,4)</td>
<td>R (9,3)</td>
<td>(\Omega) (8,1)</td>
<td>(b_i(s)) (12,5)</td>
<td>(d(s)) (10,5)</td>
<td></td>
</tr>
<tr>
<td>LLR (W,I)</td>
<td>(\sigma) (8,0)</td>
<td>LLR (10,5)</td>
<td>(L_D(b_k)) (6,4)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE II
THE DEVICE UTILIZATION FOR XILINX VIRTEX-IV CHIP AND LATENCIES.

<table>
<thead>
<tr>
<th>Resource</th>
<th>SQRD</th>
<th>LSD alg.</th>
<th>LLR calc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slices</td>
<td>2848</td>
<td>1595</td>
<td>1841</td>
</tr>
<tr>
<td>BRAMs</td>
<td>2</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>DSP48s</td>
<td>24</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Latency</td>
<td>9.06(\mu s)</td>
<td>0.133(\mu s \cdot D)</td>
<td>0.212(\mu s)</td>
</tr>
<tr>
<td>Throughput</td>
<td>110k oper./s</td>
<td>13.3Mbps@19dB</td>
<td>75.5Mbps</td>
</tr>
</tbody>
</table>
Summary and Conclusions

- List sphere detector (LSD) is an enhancement of SD that can be used to approximate the optimal soft output MAP detector in MIMO-OFDM systems
 - The LSD provides a tradeoff between the performance and the computational complexity depending on the list size
 - The detection of the signal has to done separately for each subcarrier in MIMO-OFDM system
- Modifications should be done for LSD for efficient implementation
 - Real signal model
 - Limited tree search
 - LLR clipping
- Implementation of IR-LSD presented
 - Architecture examples
 - FPGA implementation results
 ➔ LSD feasible for practical systems
References

Thank you!
Questions? Comments?